ossigeno criosalento 200 bar gas medicinale compresso bombola in acciaio valvola vr

ossigeno criosalento 200 bar gas medicinale compresso bombola in acciaio valvola vr

Riassunto delle Caratteristiche del Prodotto

ossigeno criosalento 200 bar gas medicinale compresso bombola in acciaio valvola vr: ultimo aggiornamento pagina: 14/11/2020 (Fonte: A.I.FA.)

Se sei un paziente, consulta anche il Foglietto Illustrativo (Bugiardino) di ossigeno criosalento 200 bar gas medicinale compresso bombola in acciaio valvola vr

01.0 Denominazione del medicinale

Indice

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO

02.0 Composizione qualitativa e quantitativa

Indice

Principio attivo: Ossigeno 100%

03.0 Forma farmaceutica

Indice

Gas medicinale compresso Gas medicinale criogenico

04.0 INFORMAZIONI CLINICHE

04.1 Indicazioni terapeutiche

Indice

Trattamento dell’insufficienza respiratoria acuta e cronica. Trattamento in anestesia, in terapia intensiva, in camera iperbarica.

04.2 Posologia e modo di somministrazione

Indice

L’ossigeno (compresso o criogenico) viene somministrato attraverso l’aria inalata, preferibilmente ricorrendo ad apparecchi dedicati (quali, per esempio, una cannula nasale o una maschera facciale); il dosaggio al paziente viene effettuato indipendentemente dalla confezione del gas medicinale tramite apparecchi dosatori (flussometri).

Con questi sistemi, l’ossigeno viene somministrato attraverso l’aria inspirata, mentre il gas espirato e l’eventuale eccesso di ossigeno lasciano il circuito inspiratorio del paziente mescolandosi con l’aria circostante (sistema aperto o anti-rebreathing).

In anestesia è spesso utilizzato un sistema particolare che permette di inspirare nuovamente il gas precedentemente espirato dal paziente (sistema chiuso o rebreathing).

L’ossigeno può anche essere somministrato direttamente nel sangue attraverso un ossigenatore, con un sistema di by-pass cardiopolmonare in cardiochirurgia ed in altri casi in cui è richiesta la circolazione extracorporea.

Esistono numerosi dispositivi destinati alla somministrazione dell’ossigeno, e si distinguono in:

Sistemi a basso flusso

E’ il sistema più semplice per la somministrazione di una miscela di ossigeno nell’aria inspirata, un esempio è il sistema in cui l’ossigeno è somministrato tramite un flussometro collegato ad una cannula nasale o maschera facciale.

Sistemi ad alto flusso

Sistemi progettati per fornire al paziente una miscela di gas garantendone il fabbisogno respiratorio totale. Questi sistemi sono progettati per rilasciare concentrazioni stabilite e costanti di ossigeno che non vengono influenzate/diluite dall’aria circostante, un esempio sono le maschere di Venturi dove, stabilito il flusso di ossigeno, l’aria inspirata dal paziente viene arricchita di quella concentrazione costante di ossigeno.

Sistemi con valvola a richiesta

Sistemi progettati per erogare ossigeno al 100% senza entrare in contatto con l’aria ambiente. È destinato per breve tempo, solo per necessità.

Ossigenoterapia iperbarica

L’ossigenoterapia iperbarica viene effettuata in una speciale camera pressurizzata progettata appositamente in cui si può mantenere una pressione 3 volte superiore a quella atmosferica. L’ossigenoterapia iperbarica può anche essere somministrata attraverso una maschera a perfetta tenuta, un casco o un tubo endotracheale.

Ossigenoterapia normobarica

Per ossigeno terapia normobarica si intende la somministrazione di una miscela gassosa più ricca in ossigeno di quella dell’ aria atmosferica, contenente cioè una percentuale in ossigeno nell’aria ispirata (FiO2) superiore al 21%, ad una pressione parziale compresa tra 0,21 e 1 atmosfera (0,213 e 1,013 bar).

Ai pazienti non affetti da insufficienza respiratoria, l’ossigeno può essere somministrato con ventilazione spontanea mediante cannule nasali, sonde nasofaringee o maschere idonee.

Ai pazienti con insufficienza respiratoria o anestetizzati, l’ossigeno deve essere somministrato in ventilazione assistita.

Le bombole di ossigeno hanno all’interno una pressione massima di circa 150-200 bar. La pressione viene regolata da un riduttore ed è rilevabile sul manometro. Moltiplicando la cifra

indicata dal manometro per il contenuto in litri della bombola si ottiene la quantità di ossigeno ancora disponibile nella bombola.

(Esempio: Calcolo approssimato del contenuto: una bombola ha un contenuto di 10 litri e il manometro segna 200 bar ne risulta un contenuto di 2000 litri di ossigeno. Con un consumo di 2 litri al minuto la bombola sarà vuota dopo 16 ore circa).

Con ventilazione spontanea

Pazienti con insufficienza respiratoria cronica: somministrare ossigeno ad un flusso tra 0,5 e 2 litri/minuto, adattabile in base alla gasometria.

Pazienti con insufficienza respiratoria acuta: somministrare ossigeno ad un flusso tra 0,5 e 15 litri/minuto, adattabile in base alla gasometria.

Con ventilazione assistita

Il valore minimo di FiO2 è il 21%, e può salire fino al 100%.

Lo scopo terapeutico dell’ossigenoterapia è quello di assicurare che la pressione parziale arteriosa dell’ossigeno (PaO2) non sia inferiore a 8 kPa (60 mmHg) o che l’emoglobina saturata di ossigeno nel sangue arterioso non sia inferiore al 90% mediante la regolazione della frazione di ossigeno inspirato (FiO2).

La dose deve essere adattata in base alle esigenze individuali del singolo paziente.

La raccomandazione generale è quella di utilizzare il valore minimo di FiO2 necessario per raggiungere l’effetto terapeutico desiderato, ovvero valori di PaO2 entro la norma. In condizioni di grave ipossiemia, possono essere indicati anche valori di FiO2 che comportano un potenziale rischio di intossicazione da ossigeno.

E’ necessario un monitoraggio continuo della terapia ed una valutazione costante dell’effetto terapeutico, attraverso la misurazione dei livelli della PaO2 o in alternativa, della saturazione di ossigeno arterioso (SpO2).

Nell’ossigenoterapia a breve termine, la frazione di ossigeno inspirato (FiO2) deve essere tale da mantenere un livello di PaO2 > 8 kPa con o senza pressione di fine espirazione positiva (PEEP) o pressione positiva continua (CPAP), evitando possibilmente valori di FiO2> 0,6 ovvero del 60% di ossigeno nella miscela di gas inalato.

L’ossigenoterapia a breve termine deve essere monitorata con ripetute misurazioni del gas nel sangue arterioso (PaO2) o mediante ossimetria transcutanea che fornisce un valore numerico della saturazione di emoglobina con l’ossigeno (SpO2). In ogni caso, questi indici sono solamente misurazioni indirette dell’ossigenazione tissutale. La valutazione clinica del trattamento riveste la massima importanza.

Per trattamenti a lungo termine, il fabbisogno di ossigeno supplementare deve essere determinato dai valori del gas stesso misurati nel sangue arterioso. Per evitare eccessivi accumuli di anidride carbonica deve essere monitorato l’ossigeno nel sangue, cosi da regolare l’ossigenoterapia in pazienti con ipercapnia.

Devono essere usati bassi livelli di concentrazione dell’ossigeno nei pazienti con insufficienza respiratoria in cui lo stimolo per la respirazione è rappresentato dall’ipossia (per es. a causa di BPCO). La concentrazione di ossigeno nell’aria inalata non deve superare il 28%; in alcuni pazienti persino il 24% può essere eccessivo.

Se l’ossigeno è miscelato con altri gas, la sua concentrazione nella miscela di gas inalato deve essere mantenuta almeno al 21%. In pratica, si tende a non scendere al di sotto del 30%. Ove necessario, la frazione di ossigeno inalato può essere aumentata fino al 100%.

I neonati possono ricevere il 100% di ossigeno quando necessario. Tuttavia deve essere fatto un attento monitoraggio durante il trattamento. Si raccomanda comunque di evitare una concentrazione di ossigeno eccedente il 40% per ridurre il rischio di danno al cristallino o di collasso polmonare. La pressione di ossigeno nel sangue arterioso (PaO2) deve essere monitorata, tuttavia se viene mantenuta sotto i 13,3 kPa (100 mmHg) e sono evitate significative variazioni nell’ossigenazione, il rischio di danno oculare è ridotto. Inoltre, il rischio di danno oculare può essere ridotto evitando fluttuazioni notevoli della ossigenazione (vedere anche par. 4.4).

Ossigenoterapia iperbarica

Per ossigenoterapia iperbarica si intende un trattamento con 100% di ossigeno a pressioni di

1.4 volte superiori alla pressione atmosferica a livello del mare (1 atm = 101,3 kPa = 760 mmHg). Per ragioni di sicurezza la pressione nell’ossigenoterapia iperbarica I non dovrebbe superare le 3 atm.

L’ ossigeno deve essere somministrato in camera iperbarica.

La durata delle sedute in una camera iperbarica a una pressione da 2 a 3 atmosfere (vale a dire tra il 2,026 e 3,039 bar) è tra 60 minuti e 4-6 ore. Queste sessioni possono essere ripetute da 2 a 4 volte al giorno, in funzione dello stato clinico del paziente.

La compressione e la decompressione dovrebbero essere condotte lentamente in accordo con le procedure adottate comunemente, in modo da evitare il rischio di danno pressorio (barotrauma) a carico delle cavità anatomiche contenenti aria e in comunicazione con l’esterno.

L’ossigenoterapia iperbarica deve essere effettuata da personale qualificato per questo trattamento.

04.3 Controindicazioni

Indice

In condizioni normobariche non esistono controindicazioni assolute. In condizioni iperbariche, il trattamento è controindicato in caso di:

enfisema bolloso

asma evolutiva

pneumotorace, anamnesi pregressa di pneumotorace

BPCO

polmonite da Pneumocystis carinii

stato di male epilettico

claustrofobia

gravidanza normoevolvente (primo trimestre) per patologie non acute

infezioni delle alte vie respiratorie

ipertermia

sferocitosi ereditaria

neurite del nervo ottico

tumori maligni

acidosi

somministrazione concomitante di alcuni farmaci quali doxorubicina, adriamicina, bleomicina, daunorubicina, steroidi, disulfiram, e di sostanze quali alcool, idrocarburi aromatici, cis-platino, nicotina

infanti prematuri

04.4 Speciali avvertenze e precauzioni per l’uso

Indice

L’ossigeno deve essere somministrato con cautela, con aggiustamenti in funzione delle esigenze del singolo paziente. Deve essere somministrata la dose più bassa che permette di mantenere la pressione a 8 kPa (60 mmHg). Concentrazioni più elevate devono essere somministrate per il periodo più breve possibile, monitorando i valori dell’emogasanalisi frequentemente.

L’ossigeno può essere somministrato in sicurezza alle seguenti concentrazioni e per i seguenti periodi di tempo:

Fino a 100% meno di 6 ore 60-70% 24 ore

40-50% nel corso del secondo periodo di 24 ore.

L’ossigeno è potenzialmente tossico dopo due giorni a concentrazioni superiori al 40%. Concentrazioni basse di ossigeno devono essere usate per pazienti con insufficienza respiratoria in cui lo stimolo per la respirazione è rappresentato dall’ipossia. In questi casi è necessario monitorare attentamente il trattamento, misurando la tensione arteriosa di ossigeno (PaO2), o tramite pulsometria (saturazione arteriosa di ossigeno – SpO2) e valutazioni cliniche.

La somministrazione di ossigeno a pazienti affetti da insufficienza respiratoria indotta da farmaci (oppioidi, barbiturici) o da bronco-pneumopatie croniche-ostruttive (BPCO) potrebbe aggravare ulteriormente l’insufficienza respiratoria a causa dell’ipercapnia costituita dall’elevata concentrazione nel sangue (plasma) di anidride carbonica, che annulla gli effetti sui recettori.

Nei neonati a termine e nei prematuri, la somministrazione di ossigeno ad una concentrazione superiore al 30-40% genera effetti indesiderati quali fibroplasia retrolenticolare, malattie polmonari croniche, emorragie intraventricolari. Vi è infatti una insufficiente produzione degli enzimi antiossidanti endogeni, quindi vi è una impossibilità nel contrastare la produzione e gli effetti tossici dei composti reattivi dell’ossigeno. In questi casi deve essere somministrata la più bassa concentrazione di ossigeno efficace e la pressione arteriosa di ossigeno deve essere monitorata da vicino e deve essere mantenuta al di sotto di 13,3 kPa (100 mmHg).

Le concentrazioni elevate di ossigeno nell’aria o nel gas inalato determinano la caduta della concentrazione e della pressione di azoto. Questo riduce anche la concentrazione di azoto nei tessuti e nei polmoni (alveoli). Se l’ossigeno viene assorbito nel sangue attraverso gli alveoli

più velocemente di quanto venga fornito attraverso la ventilazione, gli alveoli possono collassare (atelectasia). Questo può ostacolare l’ossigenazione del sangue arterioso, perché non avvengono scambi gassosi nonostante la perfusione.

Nei pazienti con una ridotta sensibilità alla pressione dell’anidride carbonica nel sangue arterioso, gli elevati livelli di ossigeno possono causare ritenzione di anidride carbonica. In casi estremi, questo può portare a narcosi da anidride carbonica.

La somministrazione di ossigeno in camera iperbarica deve essere attentamente valutata in funzione del rapporto rischio/beneficio, in caso di:

otiti e/o sinusiti recidivanti

patologie cardiache ischemiche e/o congestizie

ipertensione arteriosa non trattata farmacologicamente

patologie polmonari restrittive e/o restrittive di grado elevato

glaucoma, distacco di retina anche se trattato chirurgicamente (manovre di compensazione)

Pazienti affetti da diabete mellito

La terapia iperbarica può interferire nel metabolismo del glucosio. Gli effetti vasocostrittore della terapia iperbarica possono inoltre compromettere l’assorbimento sottocutaneo dell’insulina, rendendo il paziente iperglicemico.

SICUREZZA (vedere anche par. 6.6)

E’ importante ricordare che l’ossigeno è un comburente e pertanto alimenta la combustione. In presenza di sostanze combustibili quali i grassi (oli, lubrificanti) e sostanze organiche (tessuti, legno, carta, materie plastiche, ecc.) l’ossigeno può spontaneamente, per effetto di un innesco (scintilla, fiamma libera, fonte di accensione), oppure per effetto della compressione adiabatica che può accadere nelle apparecchiature di riduzione della pressione (riduttori) durante una riduzione repentina della pressione del gas) attivare una combustione. Di conseguenza, tutte le sostanze con le quali l’ossigeno viene a contatto devono essere classificate come sostanze compatibili con il prodotto nelle normali condizioni di utilizzo.

Qualsiasi sistema o contenitore per l’erogazione dell’ossigeno deve essere tenuto lontano da fonti di calore a causa della comburenza dell’ossigeno: vanno quindi prese le dovute precauzioni in merito sia in ambiente ospedaliero che domestico in presenza di ossigeno medicinale.

L’ossigeno può provocare l’improvviso incendio di materiali incandescenti o di braci; per

questo motivo non è permesso fumare o tenere fiamme accese libere e non schermate in prossimità dei recipienti e dei sistemi di erogazione.

Non fumare nell’ambiente in cui si pratica ossigenoterapia.

Non disporre bombole o contenitori in prossimità di fonti di calore.

Non deve essere utilizzata alcuna attrezzatura elettrica che può emettere scintille nelle vicinanze dei pazienti che ricevono ossigeno.

E’ assolutamente vietato intervenire in alcun modo sui raccordi dei contenitori, sulle

apparecchiature di erogazione e sui relativi accessori o componenti (OLIO E GRASSI POSSONO PRENDERE SPONTANEAMENTE FUOCO A CONTATTO CON L’OSSIGENO).

Deve essere evitato qualsiasi contatto con olio, grasso o altri idrocarburi.

E’ assolutamente vietato manipolare le apparecchiature o i componenti con le mani o gli abiti o il viso sporchi di grasso olio creme ed unguenti vari. Non usare creme e rossetti grassi

In ambiente sovraossigenato l’ossigeno può saturare gli abiti.

E’ assolutamente vietato toccare le parti congelate (per i criocontenitori).

Le bombole ed i contenitori criogenici mobili non possono essere usati se vi sono danni evidenti o si sospetta che siano stati danneggiati o siano stati esposti a temperature estreme.

Possono essere usate solo apparecchiature adatte e compatibili con l’ossigeno per il

modello specifico di recipiente.

Non si possono usare pinze o altri utensili per aprire o chiudere la valvola della bombola, al fine di prevenire il rischio di danni.

In caso di perdita, la valvola della bombola deve essere chiusa immediatamente, se si può

farlo in sicurezza. Se la valvola non può essere chiusa, la bombola deve essere portata in un posto più sicuro all’aperto per permettere all’ossigeno di fuoriuscire liberamente.

Le valvole delle bombole vuote devono essere tenute chiuse.

L’ossigeno ha un forte effetto ossidante e può reagire violentemente con sostanze organiche. Questo è il motivo per cui la manipolazione e la conservazione dei recipienti richiedono particolari precauzioni.

Non è permesso somministrare il gas in pressione.

04.5 Interazioni con altri medicinali ed altre forme di interazione

Indice

L’ossigeno non deve essere somministrato in concomitanza con la somministrazione di farmaci che ne aumentano la tossicità, come catecolamine (ad es. epinefrina, norepinefrina), corticosteroidi (ad es. desametasone, metilprednisolone), ormoni (ad es. testosterone, tiroxina), chemioterapici (bleomicina, ciclofosfammide, 1,3-bis(2-chloroethyl)-1-nitrosourea) ed agenti antimicrobici (ad es. nitrofurantoina).

I raggi X possono aumentare la tossicità dell’ossigeno. Anche l’ipertiroidismo e la mancanza di vitamina C, vitamina E o di glutatione possono produrre lo stesso effetto

La tossicità polmonare associata con farmaci come bleomicina, actinomicina, amiodarone, nitrofurantoina e antibiotici simili può essere accresciuta dall’inalazione concomitante di alte concentrazioni di ossigeno.

Nei pazienti che sono stati trattati per danno polmonare indotto da radicali liberi, la terapia a base di ossigeno può peggiorare il danno, per esempio nel trattamento dell’avvelenamento da paraquat.

L’ossigeno può anche peggiorare la depressione respiratoria indotta dall’alcool.

Farmaci noti per indurre eventi avversi comprendono: adriamicina, menadione, promazina, clorpromazina, tioridazina e clorochina. Gli effetti saranno particolarmente pronunciati nei tessuti con livelli elevati di ossigeno, specialmente i polmoni.

04.6 Gravidanza e allattamento

Indice

Non ci sono delle controindicazioni per l’uso dell’ossigeno a pressione atmosferica (pressione inferiore a 0,6 atm) in gravidanza o durante l’allattamento.

L’utilizzo del trattamento iperbarico è controindicato nella gravidanza normoevolvente (primo trimestre) per patologie non acute.

L’utilizzo della terapia iperbarica in gravidanza potrebbe indurre stress ossidativo provocando danni al DNA del feto. In casi di grave intossicazione da monossido di carbonio il rapporto beneficio/rischio sembra rassicurare verso l’uso della terapia iperbarica.

04.7 Effetti sulla capacità di guidare veicoli e sull’uso di macchinari

Indice

L’ossigeno altera la capacità di guidare veicoli o di usare macchinari. Poiché un’esposizione prolungata all’ossigeno terapeutico può avere effetti tossici sul sistema nervoso centrale, i pazienti devono evitare di guidare veicoli e usare macchinari fino a quando ogni effetto negativo su attenzione e vigilanza sono completamente scomparsi.

04.8 Effetti indesiderati

Indice

Nei pazienti con insufficienza respiratoria cronica ipossiemica o ipossiemico-ipercapnica, è possibile l’insorgenza (o il peggioramento) di ipoventilazione alveolare (ipercapnia) con conseguente acidosi, seguente all’induzione di depressione respiratoria dovuta alla soppressione dello stimolo ventilatorio causata dall’effetto del brusco aumento della pressione parziale di ossigeno a livello dei chemorecettori carotidei e aortici.

La somministrazione di ossigeno a pazienti affetti da depressione respiratoria indotta da farmaci (oppioidi, barbiturici) o da BPCO potrebbe deprimere ulteriormente la ventilazione dato che, in queste condizioni, l’ipercapnia non è più in grado di stimolare i chemorecettori centrali mentre l’ipossia è ancora in grado di stimolare i chemorecettori periferici. In particolare, nei pazienti con insufficienza respiratoria cronica, è possibile l’insorgenza di apnea da depressione respiratoria legata all’improvvisa soppressione della ventilazione dovuta al brusco aumento della pressione parziale di ossigeno a livello dei chemorecettori carotidei e aortici.

La somministrazione di ossigeno può causare una lieve riduzione della frequenza e della gittata cardiaca

L’inalazione di forti concentrazioni di ossigeno può dare origine a microatelectasie causate dalla diminuzione dell’azoto negli alveoli e dall’effetto diretto dell’ossigeno sul surfactante alveolare.

L’inalazione di ossigeno al 100%, può aumentare del 20-30% gli shunt intrapolmonari per atelectasia secondaria alla denitrogenazione delle zone mal ventilate e per ridistribuzione della circolazione polmonare dovuta al conseguente drastico innalzamento della PaO2.

L’ossigenoterapia iperbarica può dare origine a barotrauma da iper-pressione sulle pareti delle cavità chiuse, come l’orecchio interno, con rischio di edema o rottura della membrana timpanica (con dolore ed eventuale emorragia), o dei polmoni, con conseguente rischio di pneumotorace, mal di denti, implosione od esplosione dei denti, flatulenza, dolore da colica.

L’ossigenoterapia iperbarica oltre i 2 bar può occasionalmente indurre nausea, vomito, capogiro, ansia, confusione, stordimento, midriasi, crampi muscolari, mialgia, abbassamento del livello di coscienza (fino alla perdita di conoscenza), emiplegia e disturbi visivi (anche con perdita della vista) di tipo transitorio e reversibili con la riduzione della pressione parziale di ossigeno, atassia, vertigini, tinnito, perdita dell’udito.

I pazienti sottoposti ad ossigenoterapia iperbarica possono essere soggetti a crisi di claustrofobia.

A seguito di ossigenoterapia con una concentrazione di ossigeno del 100% per più di 6 ore, in particolare in somministrazione iperbarica, sono state riferite crisi convulsive ed attacchi epilettici.

Elevati flussi di ossigeno non umidificato possono produrre secchezza e irritazione delle mucose delle vie aeree (congestione o occlusione dei seni paranasali con dolore e perdita ematica) e degli occhi, cosi come un rallentamento della clearance muco-ciliare delle secrezioni.

A seguito della somministrazione di concentrazioni di ossigeno superiori all’80%, possono verificarsi lesioni polmonari.

Nei neonati, in particolare quelli prematuri, esposti a forti concentrazioni di ossigeno FiO2 > 40%, PaO2 > di 80mmHg o per periodi prolungati (più di 10 giorni a una FiO2 > 30%), si può verificare rischio di retinopatia di tipo fibroplastico retrolenticolare temporaneo o permanente. In tal caso può avvenire il distacco della retina e anche cecità permanente, displasia broncopolmonare, sanguinamento subependimale ed intraventricolare, nonché enterocolite necrotizzante.

La somministrazione di ossigeno modifica la quantità di ossigeno trasportata e ceduta ai vari tessuti. Un aumento della concentrazione locale di ossigeno, principalmente della frazione disciolta, porta ad un aumento della produzione di composti reattivi dell’ossigeno e, di conseguenza, ad un aumento di enzimi antiossidanti o di composti anti-ossidanti endogeni.

Il potenziale danno ossidativo diretto dell’ossigeno è da valutare nella gestione dei prematuri che possono risentire negativamente ed in modo persistente della perossidazione lipidica a carico delle membrane cellulari. In tali soggetti, che non dispongono ancora di un patrimonio di antiossidanti endogeni ad effetto protettivo, la somministrazione di ossigeno può contribuire allo sviluppo di condizioni patologiche persistenti a carico del parenchima polmonare (displasia broncopolmonare; fibrosi polmonare), fino all’insufficienza respiratoria.

04.9 Sovradosaggio

Indice

L’ossigeno è sempre erogato al 100%, indipendentemente dalla confezione. Le confezioni di ossigeno non costituiscono limiti di dosaggio del gas medicinale, ma solo un tempo di autonomia nell’uso.

Effetti indesiderati dovuti al sovraddosaggio possono avere luogo in pazienti esposti a quantità di ossigeno eccessive per lunghi periodi di tempo o a elevate quantità d’ossigeno in condizioni iperbariche.

Gli effetti tossici dell’ossigeno variano a seconda della pressione dell’ossigeno inalato e della durata dell’esposizione. E’ più probabile che a pressione bassa (da 0,5 a 2,0 bar) esso causi tossicità polmonare piuttosto che tossicità a carico del sistema nervoso centrale. Il contrario vale per le pressioni elevate (terapia a base di ossigeno iperbarico).

I danni al sistema respiratorio da tossicità da ossigeno sono collegati ad una sovraesposizione dell’organismo al gas e ciò può verificarsi a pressione atmosferica se al soggetto viene permesso di respirare ossigeno al 100% per un periodo superiore a 24 ore o quando la pressione parziale dell’ossigeno viene aumentata e ne deriva una condizione non fisiologica.

Tra i sintomi della tossicità polmonare si annoverano infiammazione alla gola, ipoventilazione, tosse e dolore toracico, dispnea e cianosi, danni ai bronchi ed ai polmoni, mentre i sintomi della tossicità a carico del sistema nervoso centrale comprendono movimenti scoordinati,

formicolio agli arti, disturbi della vista e dell’udito, nausea, vertigini, ansia e confusione, crampi e spasmi muscolari, perdita di coscienza, convulsioni ed attacchi epilettici.

I casi di sovradosaggio devono essere trattati riducendo la concentrazione dell’ossigeno inalato. Inoltre, deve essere fornita terapia che mantenga le normali funzioni fisiologiche del paziente (quale un supporto per la respirazione in caso di depressione respiratoria).

Nella maggior parte dei pazienti la sintomatologia si risolve dopo 4 ore di cessazione dall’esposizione.

05.0 PROPRIETÀ FARMACOLOGICHE

05.1 Proprietà farmacodinamiche

Indice

L’ossigeno costituisce approssimativamente il 21% dell’aria. L’ossigeno è trasportato attraverso le vie respiratorie ai polmoni mediante l’aria inspirata. Negli alveoli avviene lo scambio di gas per differenza di pressione parziale tra l’aria/gas inspirati e il sangue dei capillari. L’ossigeno viene trasportato principalmente legato all’emoglobina attraverso la circolazione sistemica ai capillari dei tessuti dove a sua volta si diffonde alle varie cellule grazie ad un gradiente pressorio. La destinazione finale dell’ossigeno è il mitocondrio di ogni cellula dove viene consumato in una catena di reazioni enzimatiche che generano energia.

L’aumento della frazione di ossigeno nell’aria inspirata (miscela di gas inspirata), aumenta il gradiente di pressione parziale che trasporta ossigeno alle cellule.

L’ossigeno è indispensabile alla vita e deve essere continuamente fornito a tutti i tessuti per poter garantire la produzione di energia cellulare. È coinvolto nel metabolismo e nel catabolismo cellulare e permette la produzione d’energia sotto forma di adenosina trifosfato (ATP) e pertanto, in condizioni normobariche, una riduzione del flusso ematico, un aumento della distanza fra capillare e cellula (edema infiammatorio o da stasi), lesioni fisico-chimiche o qualsiasi alterazione del trasporto o della diffusione dell’ossigeno, provocano sofferenza o morte cellulare.

La variazione della pressione parziale d’ossigeno nel sangue colpisce il sistema cardiovascolare, il sistema respiratorio, il metabolismo cellulare e il sistema nervoso centrale. La privazione d’ossigeno, che provoca l’ipossia tissutale, ha come conseguenza un rapido deterioramento dell’attività miocardica e dell’attività centrale nervosa. È fondamentale intervenire mediante terapia con ossigeno affinché i tessuti vengano adeguatamente ossigenati.

L’Ossigeno terapia iperbarica (OTI) utilizza la somministrazione di ossigeno al 100% in camere iperbariche in cui la pressione atmosferica è maggiore ad 1 ATA.

La respirazione di ossigeno a una pressione superiore a 1 atmosfera ha lo scopo di aumentare in maniera rilevante la quantità di ossigeno disciolto nel sangue arterioso che rifornisce direttamente le cellule. Per la nota legge di Henry, infatti, nella camera iperbarica si ottiene un aumento della frazione di ossigeno disciolta nel plasma e di conseguenza una sua diffusione più rapida ed in maggior quantità nei liquidi extra ed intracellulari supplendo cosi ad una insufficienza circolatoria meccanica e metabolica.

La PaO2 di un paziente che respiri aria ambiente a pressione atmosferica normale (1 ATA) è circa 100 mm Hg e può raggiungere al massimo 670 mm Hg in respirazione con ossigeno puro, migliorando la saturazione dell’emoglobina ma variando di poco la quantità di ossigeno disciolta nel plasma.

La respirazione di ossigeno al 100% in ambiente a pressione superiore a quella atmosferica determinerà aumento dell’ossigeno disciolto, che è la frazione più rapidamente utilizzabile dalle cellule, oltre naturalmente ad una completa saturazione della emoglobina.

La pressione terapeutica abitualmente scelta va da 2 a 3 ATA; al di sopra di questa pressione la dissoluzione dell’ossigeno nei liquidi è talmente ridotta che è inutile e dannoso superare questi valori.

Trattamenti intermittenti di ossigenoterapia iperbarica agevolano il trasporto di ossigeno anche nei tessuti edematosi o con scarsa perfusione, in modo da mantenere la normale funzionalità cellulare e la produzione di energia.

La variazione di pressione esercitata sui pazienti sottoposti a ossigenoterapia iperbarica riduce proporzionalmente, secondo la legge di Boyle, le dimensioni delle bolle di gas presenti nei tessuti.

L’ ossigenoterapia iperbarica inibisce la crescita di organismi anaerobi.

L’ossigenoterapia topica migliora la disponibilità dell’ossigeno sulla superficie delle lesioni e inibisce la proliferazione degli organismi anaerobi.

05.2 Proprietà farmacocinetiche

Indice

L’ossigeno somministrato per inalazione viene assorbito mediante lo scambio alveolo-capillare (circa 250 ml/min).

Durante l’inalazione di aria normale, il sangue arterioso lascia i polmoni saturato circa al 95% con ossigeno, e in un soggetto a riposo, il sangue venoso ritorna ai polmoni saturato dal 60 al 70%. In un minuto vengono utilizzati circa 360 cc di ossigeno. Dopo un’ispirazione forzata profonda la capacità polmonare è di circa 5-5,5 litri, dei quali 1 litro è di ossigeno.

L’ossigeno assunto per via inalatoria diffonde attraverso le membrane degli alveoli nel torrente circolatorio con un meccanismo di scambio dipendente dalla pressione. Il grado di assorbimento è proporzionale all’area della superficie della membrana alveolare, alla concentrazione locale dell’ossigeno e al tasso di ventilazione (frequenza e volume) del paziente.

Il sangue arterioso trasporta ossigeno in due forme. La maggior parte si lega normalmente all’emoglobina (ossiemoglobina), mentre una piccola quantità è libera in soluzione. La quantità di soluzione trasportata dipende dalla pressione parziale dell’ossigeno. Quando pienamente saturato con O2, ogni grammo di emoglobina lega l’1,3 di volume % di ossigeno. A 37 °C, lo 0.003% di O2 è disciolto nel sangue.

La quantità di ossigeno disciolta nel sangue aumenta di circa 5 volte quando si respira, in condizioni normobariche, ossigeno al 100%, anziché aria normale (21% di ossigeno). In condizioni iperbariche (oltre 3 Bar) la quantità di ossigeno disciolta aumenta ulteriormente.

Una porzione dell’ossigeno disciolto durante il trasporto diffonde nei tessuti periferici e si lega parzialmente ai citocromi e alla mioglobina.

I globuli rossi trasportano ossigeno legato ai tessuti attraverso il sistema circolatorio. Nei tessuti in cui la pressione parziale di ossigeno è inferiore a quella del sangue, l’ossigeno diffonde al di fuori dei globuli rossi, attraverso i capillari e il plasma, e all’interno delle cellule.

La maggior parte dell’ossigeno si combina con atomi di carbonio e idrogeno provenienti da molecole di glucosio per formare energia cellulare, conosciuta come adenosintrifosfato o ATP, anidride carbonica (CO2) ed acqua. Il rimanente ossigeno si combina con diversi substrati per sintetizzare le strutture cellulari o prodotti di eliminazione. L’anidride carbonica generata nelle cellule diffonde ai globuli rossi e ritorna ai polmoni, dove viene esalata. L’acqua metabolica si combina con l’acqua non digerita e l’eccesso viene eliminato per escrezione attraverso il rene o per evaporazione attraverso i polmoni e la cute.

L’ossigeno viene completamente metabolizzato. L’anidride carbonica è il principale metabolita; essa viene prodotta in tutte le cellule nel corso del processo aerobico di produzione dell’ATP nei mitocondri e trasportata dall’emoglobina nuovamente ai polmoni, dove si dissocia e diffonde al di fuori degli eritrociti nel plasma e, attraverso le membrane alveolari, nell’aria alveolare. L’anidride carbonica in forma disciolta reagisce con l’acqua, e dopo deprotonazione forma bicarbonato. Questa reazione, altamente reversibile, permette all’anidride carbonica di diffondere nell’aria alveolare. Un supplemento di ossigeno aumenta il numero di legami tra ossigeno ed emoglobina nel torrente circolatorio arterioso polmonare; questo limita la capacità di trasporto disponibile per l’anidride carbonica e ne limita l’escrezione. Il tasso di escrezione del principale metabolita dell’ossigeno è proporzionale al tasso di assorbimento e di distribuzione dell’ossigeno stesso.

Gli altri metaboliti sono i “composti reattivi dell’ossigeno” (Reactive Oxygen Species, ROS), parzialmente convertibili tra loro e inattivati per conversione enzimatica. La formazione dei ROS è connessa alla frazione di ossigeno disciolta.

Durante il metabolismo dell’ossigeno, sono generate diverse sostanze tossiche, che includono l’anione superossido (O2

), il perossido di idrogeno (H2O2), il radicale idrossilico (OH), il perossido lipidico, e altre. Il radicale superossido gioca un ruolo significativo in un numero di stati fisiopatologici che includono la tossicità da ossigeno, danni da radiazioni, infiammazione mediata dai fagociti e danno post-ischemico. Senza la disponibilità di diversi enzimi che distruggono queste sostanze intermediarie tossiche, la morte cellulare si verifica prontamente. Gli enzimi protettivi includono la superossido dismutasi (SODs), la catalasi (CAT), e la glutatione perossidasi (GP). La glutatione reduttasi (GR) partecipa riformando il glutatione. Altri contributi al controllo della tossicità ossidativa derivano dalla vitamina C (acido ascorbico), dalla vitamina E (α-tocoferolo), dalla vitamina A, e dal selenio, un cofattore per la GP.

L’ossigeno è ridotto, attraverso processi enzimatici e non, nel radicale superossido (O2

); questo o radicale o si forma in vivo negli animali attraverso l’attività di alcuni enzimi e flavoproteine.

L’ossigeno favorisce il rilascio del monossido di carbonio (CO) legato alla emoglobina e ad altre proteine contenenti ferro, quindi ostacola gli effetti negativi causati dal legame di CO al ferro.

L’ossigenoterapia iperbarica accelera il rilascio di CO ad una velocità maggiore rispetto a quella raggiungibile dalla respirazione del 100% di ossigeno a pressioni normali.

L’ossigeno somministrato localmente aumenta la disponibilità di ossigeno negli strati superficiali della lesione.

05.3 Dati preclinici di sicurezza

Indice

La prolungata esposizione a iperossia normobarica è associata ad attivazione dei leucociti e ritenzione di questi nel polmone. Tuttavia non è stato ancora chiarito se ciò possa danneggiare altri organi. Lo sviluppo di tossicità polmonare in ratti neonati è stato associato con cambiamenti significativi nella conta leucocitaria e in alterazioni istologiche nel fegato e nell’ileo. Si presume quindi che l’attivazione dei leucociti circolanti e/o l’effetto diretto dell’iperossia normobarica possa danneggiare vari organi indipendentemente dalla patologia polmonare indotta da iperossia normobarica.

La respirazione di ossigeno a 1 atmosfera o a livelli più alti può provocare una modesta e reversibile depressione respiratoria, come conseguenza della perdita dell’attività chemorecettoriale tonica.

La somministrazione di supplementi di ossigeno nell’uomo e negli animali da laboratorio porta a una riduzione della frequenza e, di conseguenza, della gittata cardiaca, e a una diminuzione della pressione arteriosa polmonare per effetto del rilassamento del tono vascolare legato alla ridotta ipossia alveolare regionale.

La somministrazione di ossigeno supplementare produce una maggior quantità di specie reattive che, quando la capacità degli antiossidanti enzimatici o la quantità di antiossidanti endogeni è limitata, possono interagire con residui aminoacidici di proteine, legami insaturi dei lipidi, carboidrati e DNA.

L’iperossia può indurre danno acuto a livello polmonare, portando a necrosi delle cellule endoteliali e successiva proliferazione delle cellule polmonari di tipo II. Un aumento cronico nella quantità di ossigeno somministrato può portare a induzione degli enzimi antiossidanti, pertanto le possibilità di provocare danno ossidativo si riducono quando la somministrazione è cronica. L’eccesso di esposizione a O2 in condizioni iperbariche può determinare attivazione delle citochine infiammatorie polmonari.

L’esposizione delle vie aeree ad ossigeno per periodi prolungati provoca l’esposizione dell’epitelio polmonare a ossidanti di generazione endogena ed esogena. I danni funzionali da esposizione prolungata a O2 al 100% sono comunque limitati e lo sviluppo di ROS può essere in qualche misura antagonizzato dall’aumentata produzione di antiossidanti endogeni.

Sono state esaminate le caratteristiche dell’mRNA estratto da polmoni di topi esposti a dosi elevate di ossigeno (maggiori del 95%) per tre giorni consecutivi: si dimostra un aumento dell’espressione dei geni per il fattore di necrosi tumorale (TNF), interleukina-1 e interleukina-6, a confronto con mRNA estratto da polmoni di topi esposti all’aria ambiente.

Conigli adulti esposti ad un atmosfera di ossigeno al 100% per 48 ore, manifestano inoltre, a livello delle cellule visive mature, un effetto tossico dell’iperossia, che ha come conseguenza perdita dell’elettroretinogramma (ERG) e morte delle cellule stesse.

Studi effettuati su pecore, hanno indicato che, dopo 96 ore di esposizione all’O2 al 100% la compliance dinamica risulta significativamente ridotta, senza concomitante aumento della reattività delle vie aeree.

Numerosissimi studi condotti in vari modelli sperimentali hanno nel complesso confermato il danno da ossigeno iperbarico sul DNA cellulare. La ripetuta esposizione ad ossigeno iperbarico può aumentare il rischio di mutagenesi definito con saggi standard.

Non esistono dati di cancerogenicità dell’ossigeno.

Lo stress ossidativo e le specie reattive dell’ossigeno possono alterare lo sviluppo embrionale sia in senso positivo che negativo. Le risposte sono legate sia alla produzione di ROS che a fenomeni di vasocostrizione che possono portare a vasobliterazione e neovascolarizzazione nella retina.

L’esposizione all’ossigeno sia a pressione normale che in OTI può, a seguito della formazione di ROS, determinare tossicità riproduttiva, in particolare embriotossicità e anche tossicità nel neonato, oltre che tossicità spermatica.

L’esposizione acuta di cani al 100% di O2 a pressione atmosferica ha determinato avvelenamento dopo 36 ore, sofferenza/angoscia entro 48 ore e morte entro 60 ore. Un’esposizione al 90% di O2 richiede il doppio del tempo per ottenere simili risultati. L’esposizione all’80% non causa morte ma gli animali mostrano segni patologici dopo l’esposizione continua per una settimana. La diminuzione della saturazione di O2 nel sangue, l’aumento dell’emoglobina, congestione polmonare ed edema, scompenso della parte destra del cuore e congestione epatica sono conseguenze frequenti in caso di avvelenamento da ossigeno.

Inoltre, studi condotti su ratte gravide e neonati, hanno evidenziato che una bassa concentrazione di ossigeno può favorire un’ischemia, ed indurre la produzione di forme

attive dell’ossigeno quali anioni superossidi e perossidasi lipidiche che determinerebbero serie conseguenze in vari organi. Si ipotizza che la bassa concentrazione di ossigeno può aver causato la perossidazione dei lipidi nel feto a causa di una maggior richiesta di ossigeno durante il periodo gestazionale.

INFORMAZIONI FARMACEUTICHE

06.1 Eccipienti

Indice

Non applicabile.

06.2 Incompatibilità

Indice

L’ossigeno è un comburente e pertanto alimenta la combustione. In presenza di sostanze combustibili quali i grassi (oli, lubrificanti) e sostanze organiche (tessuti, legno, carta, materie plastiche, ecc.) l’ossigeno può spontaneamente, attivare una combustione per effetto di un innesco (scintilla, fiamma libera, fonte di accensione), oppure per effetto della compressione adiabatica che può accadere nelle apparecchiature di riduzione della pressione (riduttori) durante una riduzione repentina della pressione del gas) attivare una combustione. Di conseguenza, tutte le sostanze con le quali l’ossigeno viene a contatto devono essere classificate come sostanze compatibili con il prodotto nelle normali condizioni di utilizzo.

06.3 Periodo di validità

Indice

Bombole di ossigeno compresso: 5 anni Contenitori mobili di ossigeno criogenico: 1 mese Contenitori fissi di ossigeno criogenico: 3 mesi

06.4 Speciali precauzioni per la conservazione

Indice

Osservare tutte le regole pertinenti all’uso e alla movimentazione delle bombole sotto pressione e dei recipienti contenenti liquidi criogenici.

Conservare le bombole e i recipienti criogenici mobili a temperature comprese tra -10°C e 50°C, in ambienti ben ventilati, oppure in rimesse ben ventilate, evitando la formazione di atmosfere sovraossigenate (O2> 21% vol.), in posizione verticale con le valvole chiuse, protetti da pioggia, intemperie, dall’esposizione alla luce solare diretta, lontano da fonti di calore o d’ignizione e da materiali combustibili. I recipienti vuoti o che contengono altri tipi di gas devono essere conservati separatamente.

I contenitori criogenici fissi, installati presso le strutture sanitarie, devono essere collocati all’aperto secondo quanto specificato dalla Circolare 99/1964, in zone confinate e protette, con accessi limitati agli addetti, gestiti e mantenuti secondo le indicazioni fornite da ciascun Fabbricante. Si tratta di apparecchiature a pressione e quindi soggette alla Direttiva CE PED e/o al Decreto Ministeriale del 21/11/1972.

06.5 Natura e contenuto della confezione

Indice

OSSIGENO CRIOSALENTO gas medicinale compresso è confezionato in bombole e pacchi bombola, allo stato di gas compresso a 200 bar a 15°C. Le bombole sono in acciaio o in lega di alluminio, provviste di valvole in grado di collegarsi ad un riduttore di pressione o di valvole riduttrici con riduttore di pressione integrato.

OSSIGENO CRIOSALENTO gas medicinale criogenico è confezionato in contenitori criogenici mobili (unità base) o fissi.

06.6 Istruzioni per l’uso e la manipolazione

Indice

Le bombole di ossigeno medicinale, come anche i contenitori criogenici fissi e mobili, sono riservati esclusivamente a contenere/trasportare ossigeno per inalazione, ad uso terapeutico

Le bombole e i contenitori criogenici mobili (Unità Base) devono essere trasportati utilizzando mezzi appropriati per proteggerli dai rischi di urti e di caduta

Rispettare imperativamente le seguenti istruzioni:

Leggere attentamente il manuale d’istruzione ed uso del contenitore (confezione).

Verificare che tutto il materiale sia in buono stato.

Fissare le bombole e le unità base per mantenerle in posizione verticale ed evitare cadute intempestive, proteggerle dagli urti e mantenerle a temperatura inferiore ai 50°C, assicurando un’adeguata ventilazione/aerazione dei locali dove viene utilizzato il prodotto. Le bombole devono essere munite di cappellotto/tulipano a protezione della valvola.

Manipolare il materiale con le mani pulite, prive di tracce di grasso o olio.

Sollevare e movimentare le bombole e le unità base utilizzando esclusivamente l’apposito carrello, non sollevare la bombola prendendola dalla valvola.

Utilizzare raccordi, tubi di collegamento o flessibili di raccordo specifici e compatibili con

l’ossigeno.

Si deve assolutamente prestare particolare attenzione anche al fissaggio di riduttori di pressione sulle bombole, qualora non già integrati nel sistema di chiusura del contenitore, onde evitare i rischi di rotture accidentali.

E’ assolutamente vietato intervenire in alcun modo sui raccordi dei contenitori, sulle

apparecchiature di erogazione ed i relativi accessori o componenti (OLIO E GRASSI POSSONO PRENDERE SPONTANEAMENTE FUOCO A CONTATTO CON L’OSSIGENO).

Non ingrassare, né tentare di riparare valvole/rubinetti difettosi.

E’ assolutamente vietato manipolare le apparecchiature o i componenti con le mani o gli abiti o il viso sporchi di grasso olio, creme ed unguenti vari.

E’ assolutamente vietato toccare le parti congelate (per i criocontenitori).

Istruzioni generali per l’uso

Bombole munite di sola valvola di intercettazione

Togliere il cappellotto di protezione qualora presente

Assicurarsi che la valvola di erogazione sia chiusa

Togliere il sigillo di inviolabilità

Collegare il riduttore alla valvola della bombola ed il relativo flussometro

Collegare l’umidificatore/gorgogliatore

Collegare la cannula provvista di maschera od occhialini all’umidificatore

Aprire lentamente la valvola generale fino a completa apertura

Regolare il flussometro ai valori di portata richiesti (litri/minuto)

Bombole munite di valvola riduttrice integrata

Assicurarsi che la valvola sia chiusa

Togliere il sigillo di inviolabilità

Assicurarsi che l’indicatore di flusso sia posizionato sullo zero

Collegare l’umidificatore/gorgogliatore

Collegare la cannula provvista di maschera od occhialini all’umidificatore

Aprire lentamente la valvola generale fino a completa apertura

Regolare il flussometro ai valori di portata richiesti (litri/minuto)

Contenitori criogenici mobili

Assicurarsi che l’indicatore di flusso sia posizionato sullo zero

Togliere il sigillo di inviolabilità

Collegare l’umidificatore /gorgogliatore

Collegare la cannula provvista di maschera od occhialini all’umidificatore

Posizionare il regolatore di flusso ai valori di portata richiesti(litri/minuto)

NOTA: PER MAGGIORI DETTAGLI CONSULTARE IL MANUALE D’USO DEL CONTENITORE ATTENZIONE

Aprire gradualmente i sistemi di chiusura dei contenitori (la valvola o il rubinetto) per evitare colpi di pressione,

Non forzare rubinetti e valvole durante l’apertura e chiusura,

Non posizionarsi mai di fronte alla bocca di uscita del gas dal rubinetto/valvola, ma sempre sul lato opposto. Non esporsi né esporre il paziente al flusso diretto del gas.

Non usare olio o grasso a contatto con il gas.

Non svuotare completamente il recipiente.

Dopo l’uso chiudere la valvola della bombola.

In caso di perdita di gas, chiudere la valvola e avvertire il servizio di intervento tecnico del fornitore indicato sul Manuale d’uso del contenitore.

Utilizzare solo contenitori adatti per il prodotto, alle previste pressioni e temperature di

impiego.

Durante l’utilizzo

Non usare creme e rossetti grassi.

Non fumare.

Non avvicinarsi alla confezione con fiamme libere.

Non deve essere utilizzata alcuna attrezzatura elettrica che può emettere scintille nelle vicinanze dei pazienti che ricevono ossigeno.

Non utilizzare oli o grassi su raccordi, rubinetti, valvola e su qualsiasi materiale a contatto con

l’ossigeno.

Non introdurre mai l’ossigeno in un apparecchio che potrebbe contenere dei materiali combustibili e in particolare delle materie grasse.

Smaltimento

Conservare le bombole vuote con le valvole chiuse.

Non scaricare in fogne, scantinati o scavi dove l’accumulo può essere pericoloso.

Riconsegnare i contenitori vuoti o non più utilizzati, anche se solo parzialmente vuoti, al fornitore. Eventuali residui di prodotto medicinale non utilizzato presenti nella bombola a pressione saranno eliminati, tramite apposite procedure, in zona ben ventilata dalla società che provvederà al successivo riempimento dello stesso contenitore.

Il medicinale non utilizzato ed i rifiuti derivati da tale medicinale devono essere smaltiti in

conformità alla normativa locale vigente.

07.0 Titolare dell’autorizzazione all’immissione in commercio

Indice

CRIOSALENTO S.R.L. – ZONA INDUSTRIALE – LECCE

08.0 Numeri delle autorizzazioni all’immissione in commercio

Indice

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 0,5 LITRI

AIC 038941011

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 0,5 LITRI AIC

038941023

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 0,8 LITRI AIC

038941035

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 0,8 LITRI

AIC 038941047

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 1 LITRO AIC

038941050

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 1 LITRO AIC

038941062

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 2 LITRI AIC

038941074

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 2 LITRI AIC

038941086

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 3 LITRI AIC

038941098

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 3 LITRI AIC

038941100

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ALLUMINIO CON VALVOLA VR 3 LITRI

AIC 038941112

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ALLUMINIO CON VALVOLA VI 3 LITRI

AIC 038941124

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 5 LITRI AIC

038941136

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 5 LITRI AIC

038941148

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ALLUMINIO CON VALVOLA VR 5 LITRI

AIC 038941151

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 7 LITRI AIC

038941163

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 7 LITRI AIC

038941175

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ALLUMINIO CON VALVOLA VR 7 LITRI

AIC 038941187

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 10 LITRI AIC

038941199

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 10 LITRI AIC

038941201

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 14 LITRI AIC

038941213

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 14 LITRI IC

038941225

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 20 LITRI AIC

038941237

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 20 LITRI AIC

038941249

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VR 27 LITRI AIC

038941252

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 27 LITRI AIC

038941264

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 40 LITRI AIC

038941276

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – BOMBOLA IN ACCIAIO CON VALVOLA VI 50 LITRI AIC

038941288

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – PACCO BOMBOLA DA 12 BOMBOLE IN ACCIAIO CON VALVOLA VI DA 40 LITRI

AIC 038941290

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – PACCO BOMBOLA DA 16 BOMBOLE IN ACCIAIO CON VALVOLA VI DA 40 LITRI

AIC 038941302

OSSIGENO CRIOSALENTO 200 BAR GAS MEDICINALE COMPRESSO – PACCO BOMBOLA DA 16 BOMBOLE IN ACCIAIO CON VALVOLA VI DA 50 LITRI

AIC 038941314

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 21 LITRI

AIC 038941403

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 31 LITRI

AIC 038941415

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 32 LITRI

AIC 038941427

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 36 LITRI

AIC 038941439

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 37 LITRI

AIC 038941441

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 38 LITRI

AIC 038941454

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 41 LITRI

AIC 038941466

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO MOBILE 46 LITRI

AIC 038941478

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 830 LITRI

AIC 038941326

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 1500 LITRI

AIC 038941338

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 1900 LITRI

AIC 038941340

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 3300 LITRI

AIC 038941353

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 4000 LITRI

AIC 038941365

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 5500 LITRI

AIC 038941377

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 10000 LITRI

AIC 038941389

OSSIGENO CRIOSALENTO GAS MEDICINALE CRIOGENICO – CONTENITORE CRIOGENICO FISSO 20000 LITRI

AIC 038941391

09.0 Data della prima autorizzazione/Rinnovo dell’autorizzazione

Indice

18.12.2009

10.0 Data di revisione del testo

Indice

Documento messo a disposizione da A.I.FA. in data: ———-